If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=(6x^2+20x)-(x^2+8x+64)
We move all terms to the left:
0-((6x^2+20x)-(x^2+8x+64))=0
We add all the numbers together, and all the variables
-((6x^2+20x)-(x^2+8x+64))=0
We calculate terms in parentheses: -((6x^2+20x)-(x^2+8x+64)), so:We get rid of parentheses
(6x^2+20x)-(x^2+8x+64)
We get rid of parentheses
6x^2-x^2+20x-8x-64
We add all the numbers together, and all the variables
5x^2+12x-64
Back to the equation:
-(5x^2+12x-64)
-5x^2-12x+64=0
a = -5; b = -12; c = +64;
Δ = b2-4ac
Δ = -122-4·(-5)·64
Δ = 1424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1424}=\sqrt{16*89}=\sqrt{16}*\sqrt{89}=4\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{89}}{2*-5}=\frac{12-4\sqrt{89}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{89}}{2*-5}=\frac{12+4\sqrt{89}}{-10} $
| (x-7)2=25 | | 70-q-q2q=80 | | 5(2–c)=10(2c–4)–6(3c+1) | | -4(4x-1)=-16x-4 | | y=3/5*1-1 | | -10+8x=4+2(x-12) | | x+22=2x-13 | | (1/3)x-6=2x+1 | | 0,5+2y=-6 | | 13+3(3+8)=x-3 | | 9.2x-3+7.3x+7.3x+9.2x-3=324 | | Y=80x-80 | | -k=6-75+20=-2 | | 2.4/3.6=x/9 | | 6y-8=13y-8 | | 0=-4x^2+20x+7 | | -2.7w-5.24=5-3.3w | | 20-(x/3)=(x/3) | | 6x+27+7x−9=96 | | 8x+10=3x+35 | | 11x-11=13x-27 | | 16=b^2 | | 2v-10/2v=0 | | 25-6n=2n- | | x4+x3-11x2+18x-8=0 | | 0.2(x-12)=0.4x | | -3(x-2)=3(x-14) | | 2x+(1/2x+5)=10 | | x/489100-x=0.379555 | | X=x^2+16 | | 6+3p–3=-4p+17 | | 26-(5n-8)=-6 |